Big Data 19.01.2022, 06:00 Uhr

Mit KI Antibiotikaresistenzen schneller vorhersagen

Eine Studie unter Co-​Leitung der ETH Zürich hat gezeigt, dass sich Resistenzen von Bakterien mittels Computeralgorithmen deutlich schneller ermitteln lassen als bisher. Dies könnte helfen, schwere Infekte in Zukunft effizienter zu behandeln.
Das Computermodell von ETH und Uni Basel lernte anhand Daten von über 300'000 Bakterienproben Antibiotikaresistenzen selbstständig vorherzusagen. (Symbolbild)
(Quelle: Geralt/Pixabay)
Weltweit sind antibiotikaresistente Bakterien auf dem Vormarsch, so auch in der Schweiz. Rund 300 Menschen pro Jahr versterben hierzulande an Infektionen verursacht durch multiresistente Bakterien. Um die Ausbreitung von resistenten Bakterien zu bremsen, spielen die rasche Diagnostik und der zielgerichtete Einsatz von Antibiotika eine entscheidende Rolle.
Doch genau hier liegt das Problem: Die Überprüfung, welche Antibiotika bei einem Krankheitserreger noch wirken, dauert oft zwei Tage oder länger, weil die Bakterien aus Patientenproben zunächst im Labor kultiviert werden müssen. Schwere Infekte behandeln Ärztinnen und Ärzte daher anfangs oft mit einem sogenannten Breitbandantibiotikum, das gegen möglichst viele Bakterienarten wirkt.
Forschende der ETH Zürich, des Universitätsspitals Basel und der Universität Basel haben nun eine Methode entwickelt, mit der sich Merkmale von Antibiotikaresistenzen bei Bakterien anhand von Massenspektrometrie-​Daten bereits 24 Stunden früher ermitteln lassen.
«Intelligente Computeralgorithmen suchen in den Daten nach Mustern, die Bakterien mit und ohne Resistenz voneinander unterscheiden», erklärt Caroline Weis, Doktorandin am Departement für Biosysteme an der ETH Zürich in Basel und Erstautorin der Studie. Die Forschenden veröffentlichten die Methode in der jüngsten Ausgabe des Fachmagazins Nature Medicine.

Die Zeit bis zur optimalen Therapie ist kritisch

Wenn sich wichtige Antibiotikaresistenzen frühzeitig bestimmen lassen, können Ärztinnen und Ärzte die Antibiotikatherapie entsprechend schneller gezielt auf das jeweilige Bakterium abstimmen. Profitieren würden davon insbesondere schwerkranke Patientinnen und Patienten.
«Die Zeit bis zur optimalen Therapie kann bei einem schweren Infekt über Leben und Tod entscheiden. Eine schnelle und genaue Diagnostik ist hier enorm wichtig», sagt Adrian Egli, Leiter der Klinischen Bakteriologie und Professor am Universitätsspital Basel.
Das Massenspektrometrie-​Gerät, das die Daten für die neue Methode liefert, wird in den meisten mikrobiologischen Laboren bereits heute eingesetzt, um die Bakterienart zu identifizieren. Das Gerät vermisst Tausende von Proteinbruchstücken in der Probe und erstellt daraufhin einen individuellen Fingerabdruck der bakteriellen Proteine. Auch dazu müssen die Bakterien vorgängig kultiviert werden, allerdings bloss während wenigen Stunden.

Autor(in) Rahel Künzler, ETH-News



Kommentare

Es sind keine Kommentare vorhanden.